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Outline

• Stability & Robustness
• Introduction – role of sensitivity functions
• Nyquist Analysis
• Traditional gain/phase margins



Introduction to Nyquist Stability Analysis

• Nyquist Analysis
• A graphical method to determine how many closed loop poles are in the 

right half plane
• Developed in the early 1930’s – those days it was not easy to find the 

roots of high order polynomials

• Stability Margins
• Nyquist analysis provides a clear concept of ‘stability margin’
• This concept generalizes to more complex MIMO systems
• It remains a key concept in the current era



Cauchy Theorem
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Nyquist
• Take F(s)=1+L(s) (note: F=S-1)
• Choose a C that encloses the entire RHP
• Map into L-plane instead of F-plane (shift by -1)
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Nyquist Theorem
Theorem (Nyquist): If the plot of L(s) (i.e., the 

image of the Nyquist contour in the L-plane) 
encircles the point -1+j0 in the counterclockwise 
direction as many times as there are unstable 
open loop poles (poles of L(s) within the Nyquist 
contour) then the feedback system has no poles 
in the RHP.
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Example 1
R →∞
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Example 2
R →∞
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Example 3 ( )
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>> s=tf(‘s’);
>> G=1/(s*(s^2+2*0.1*s+1));
>> nyquist(G)

>> s=tf(‘s’);
>> G=1/((s+0.01)*(s^2+2*0.1*s+1));
>> nyquist(G)

To 
obtain 
global 
picture



Gain & Phase Margin
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Robustness From Sensitivity Functions
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Sensitivity peaks are related to gain and phase margin.
Sensitivity peaks are related to overshoot and damping ratio.
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Example: XV-15
Sensitivity function plots for
K=1, 5, 25

Larger sensitivity peak, closer to 
instability, reduced gain and 
phase margins, reduced damping, 
increased overshoot

-100

-50

0

M
ag

ni
tu

de
 (d

B)

10
-2

10
-1

10
0

10
1

10
2

0

45

90

135

180

Ph
as

e 
(d

eg
)

Bode Diagram

  



Example: single unstable pole
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Example Cont’d- MATLAB Computations
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s=tf('s')
L=0.60/((s-0.5)*(s 1));
figure
nyquist(L,1.25*L,0.835*L)
grid
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Summary
• Need to consider 2-3 transfer functions to fully evaluate 

performance
• Bandwidth is inversely related to settling time
• Sensitivity function peak is related to overshoot and 

inversely to damping ratio
• Gain and phase margins can be determined from Nyquist 

or Bode plots
• Sensitivity peak is inversely related to stability margin
• Design tools:

• Bode and/or Nyquist diagrams helps establish robustness 
(margins) & performance (sensitivity peaks)
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