

Robust Stability

MEM 355 Performance Enhancement of Dynamical Systems

Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University

Outline

- Stability & Robustness
- Introduction role of sensitivity functions
- Nyquist Analysis
- Traditional gain/phase margins

Introduction to Nyquist Stability Analysis

• Nyquist Analysis

- A graphical method to determine how many closed loop poles are in the right half plane
- Developed in the early 1930's those days it was not easy to find the roots of high order polynomials
- Stability Margins
	- Nyquist analysis provides a clear concept of 'stability margin'
	- This concept generalizes to more complex MIMO systems
	- It remains a key concept in the current era

 $Z = P - N$

where

- the number of counterclockwise encirclements of the origin *N* by C_1 as s traverses C once in the clockwise direction.
- Z the number of zeros of $F(s)$ enclosed by C, counting multiplicities.
- P the number of poles of $F(s)$ enclosed by C, counting multiplicities.

Nyquist

- Take *F*(*s*)=1+*L*(*s*) (note: *F*=*S-*1)
- Choose a *C* that encloses the entire RHP
- Map into *L*-plane instead of *F*-plane (shift by -1)

Nyquist Theorem

Theorem (Nyquist): If the plot of *L*(*s*) (i.e., the image of the Nyquist contour in the *L*-plane) encircles the point -1+*j*0 in the counterclockwise direction as many times as there are unstable open loop poles (poles of *L*(*s*) within the Nyquist contour) then the feedback system has no poles in the RHP.

$$
Z = P - N
$$

closed loop poles in $RHP =$ open loop poles in $RHP - cc$ encirclements of -1

Example 1
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{\omega_0}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{\omega_0}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{s^2}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{s^2}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{s^2}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{s^2}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{s^2}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{s^2}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{s^2}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{s^2}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{s^2}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{s^2}
$$
\n
$$
L(s) = \frac{1}{(s+p_1)(s^2+2\zeta\omega_0 s+\omega_0^2)} \times \frac{1}{
$$

Example 2 $R \rightarrow \infty$ *s*-plane X X X −1 *L*-plane $L(s)$ I \mathbf{u} III \mathcal{J}_{IV} $(s) = \frac{1}{s(s^2 + 2\zeta\omega_0 s + \omega_0^2)}$ $(j\omega) = \frac{1}{j\omega\left(-\omega^2 + j2\zeta\omega_0\omega + {\omega_0}^2\right)}$ $(\rho e^{j\theta}) = \frac{1}{\rho e^{j\theta} (\rho^2 e^{j2\theta} + 2\zeta \omega_0 \rho e^{j\theta} + \omega_0^2)}$ $\left(\varepsilon e^{j\theta} \right) = \frac{1}{\varepsilon e^{j\theta} \left(\varepsilon^2 e^{j2\theta} + 2 \zeta \omega_0 \varepsilon e^{j\theta} + {\omega_0}^2 \right)}$ $2 \sqrt{2\epsilon_0}$ 10^2 $_{0}^{\mathrm{o}}$ \cdot ω_{0} 2 $\sqrt{2\epsilon_0}$ ω ω^2 $_{0}$ ω $_{0}$ 2 $_{2}$ $^{j2\theta}$ $_{1}$ 2 2 $_{2}$ 2 $_{3}$ $^{2\theta}$ $_{1}$ 2 $_{0}\mu$ σ $_{0}$ III: $s = -j\omega$, III \rightarrow I^{*} $\frac{2}{2} \rho^{j2\theta}$ $\sqrt{2\epsilon_0} \rho^{j\theta}$ $\sqrt{\omega^2}$ $\varepsilon \rightarrow 0$ σ^2 ω_0 ϵ ϵ ω ₀ ϵ ω ₀ 1 2 I: $s = j\omega \Rightarrow L(j\omega) = \frac{1}{(1 - j\omega)(\omega + \omega^2)(\omega + \omega^2)}$ $s = j\omega \Rightarrow L(j\omega) = \frac{1}{j\omega\left(-\omega^2 + j2\zeta\omega_0\omega + {\omega_0}^2\right)}, 0 < \omega$ II: $s = \rho e^{j\theta}, \rho \to \infty, \theta = \frac{\pi}{2} \sqrt{2} - \frac{\pi}{2}$ $(e^{j\theta}) = \frac{1}{(e^{j\theta})^2}$ $e^{j\theta}$ $\left(\rho^2 e^{j2\theta} + 2\zeta \omega_0 \rho e^{j2\theta}\right)$ $IV: s = \varepsilon e^{j\theta}, \varepsilon \to 0, \theta = -\frac{\pi}{2} \uparrow \frac{\pi}{2}$ 1 1 e $e^{j\theta}$ ($\varepsilon^2 e^{j2\theta}$ + 2 $\zeta \omega_0 \varepsilon e$ *j* $L(\rho e^{j\theta}) = \frac{1}{\rho e^{j\theta} \left(\rho^2 e^{j2\theta} + 2\pi\sigma \rho^j \right)}$ *j j* $L(\varepsilon e^{j\theta}) = \frac{1}{\varepsilon e^{j\theta} \left(e^2 e^{j2\theta} + 2 \xi e^{j2\theta} + e^{2j} \right)} \longrightarrow \frac{1}{\varepsilon e^{j\theta}} e^{-j\theta}$ $L(s)$ $=\frac{1}{s\left(s^2+2\zeta\omega_0s+\omega_0\right)}$ $\left(\rho e^{j\theta} \right) = \frac{1}{\cos i\theta \left(\frac{2}{\theta} e^{j2\theta} + 2\zeta \cos 2i\theta + \cos 2i\right)}$ $\mathcal{E}e^{j\theta}$ = $\frac{1}{\cos(\theta) \left(2\pi i^2\theta + 2\pi i\theta + \sin(\theta) + \sin^2\theta\right)}$ $\omega(-\omega^2+j2\zeta\omega_0\omega+\omega_0)$ $=\frac{1}{\rho e^{j\theta}(\rho^2 e^{j2\theta}+2\zeta\omega_0\rho e^{j\theta}+\omega_0^2)}$ \longrightarrow $\varepsilon \, e^{j\theta} \left(\varepsilon^2 \, e^{j2\theta} + 2 \zeta \omega_0 \varepsilon \, e^{j\theta} + \omega_0^2 \right) \quad \varepsilon \rightarrow 0 \quad \varepsilon \omega_0$ − $=\frac{1}{\cos i\theta \left(\frac{2}{\rho^2} - i^2\theta + 2\zeta \right)^2 \left(\frac{\theta}{\rho^2} + 2\zeta \right)^2}$ $= j\omega \Rightarrow L(j\omega) = \frac{1}{(1-\omega)(\omega - \omega)}$, $0 < \omega < \infty$ $-\omega^2 + j2\zeta\omega_0\omega +$ + 2 $\zeta \omega_0 \rho e^{j\theta}$ + $+2\zeta\omega_0\varepsilon e^{j\theta}+$ Principle part

Example 3 $G(s) = \frac{1}{s(s^2 + 2(0.1)s + 1)}$ 1 $2(0.1) s + 1$ $G(s)$ $s(s^2+2(0.1)s)$ = $+ 2(0.1)s +$

 \gg s=tf('s'); \gg G=1/(s*(s^2+2*0.1*s+1)); \gg nyquist(G)

maginary Axis

 -6 -6

 -5

Nyquist Diagram

 -3

Real Axis

 \overline{A}

 -2

 -1

 $\overline{0}$

Gain & Phase Margin

Robustness From Sensitivity Functions

Sensitivity peaks are related to gain and phase margin. Sensitivity peaks are related to overshoot and damping ratio.

Example: XV-15

Sensitivity function plots for *K*=1, 5, 25

Larger sensitivity peak, closer to instability, reduced gain and phase margins, reduced damping, increased overshoot

Bode Diagram

Example: single unstable pole

Example Cont'd- MATLAB Computations

$$
L(s) = \frac{0.6}{(s - 0.5)(s^2 + s + 1)}
$$

s=tf(s')
L=0.60/((s-0.5)* (s² + s + 1));
figure
nyquist(L, 1.25*L, 0.835*L)
grid

Summary

- Need to consider 2-3 transfer functions to fully evaluate performance
- Bandwidth is inversely related to settling time
- Sensitivity function peak is related to overshoot and inversely to damping ratio
- Gain and phase margins can be determined from Nyquist or Bode plots
- Sensitivity peak is inversely related to stability margin
- Design tools:
	- Bode and/or Nyquist diagrams helps establish robustness (margins) & performance (sensitivity peaks)

